Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures.

نویسندگان

  • John Simon
  • Vladimir Protasenko
  • Chuanxin Lian
  • Huili Xing
  • Debdeep Jena
چکیده

Impurity-based p-type doping in wide-band-gap semiconductors is inefficient at room temperature for applications such as lasers because the positive-charge carriers (holes) have a large thermal activation energy. We demonstrate high-efficiency p-type doping by ionizing acceptor dopants using the built-in electronic polarization in bulk uniaxial semiconductor crystals. Because the mobile hole gases are field-ionized, they are robust to thermal freezeout effects and lead to major improvements in p-type electrical conductivity. The new doping technique results in improved optical emission efficiency in prototype ultraviolet light-emitting-diode structures. Polarization-induced doping provides an attractive solution to both p- and n-type doping problems in wide-band-gap semiconductors and offers an unconventional path for the development of solid-state deep-ultraviolet optoelectronic devices and wide-band-gap bipolar electronic devices of the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandga...

متن کامل

Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence.

Almost all electronic devices utilize a pn junction formed by random doping of donor and acceptor impurity atoms. We developed a fundamentally new type of pn junction not formed by impurity-doping, but rather by grading the composition of a semiconductor nanowire resulting in alternating p and n conducting regions due to polarization charge. By linearly grading AlGaN nanowires from 0% to 100% a...

متن کامل

0 D ec 1 99 6 Interband mixing between two - dimensional states localized in a surface quantum well and heavy hole states of the valence band in narrow gap semiconductor

Interband mixing between two-dimensional states localized in a surface quantum well and heavy hole states of the valence band in narrow gap semiconductor Abstract Theoretical calculations in the framework of Kane model have been carried out in order to elucidate the role of interband mixing in forming the energy spectrum of two-dimensional carriers, localized in a surface quantum well in narrow...

متن کامل

Vertical Electron Transport in GaN/AlGaN Heterostructures

Nonequilibrium dc and large-signal ac vertical electron transport in GaN/AlGaN heterostructures is investigated by Monte Carlo simulations. The symmetric two-barrier GaN/AlGaN heterostructures are studied. The results of simulations show that polarization charges have a profound effect on dc and large-signal ac characteristics of vertical electron transport in GaN/AlGaN heterostructures. Under ...

متن کامل

Intrinsic limitations to the doping of wide-gap semiconductors

Doping limits in semiconductors are discussed in terms of the amphoteric defect model (ADM). It is shown that the maximum free electron or hole concentration that can be achieved by doping is an intrinsic property of a given semiconductor and is fully determined by the location of the semiconductor band edges with respect to a common energy reference, the Fermi level stabilization energy. The A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Science

دوره 327 5961  شماره 

صفحات  -

تاریخ انتشار 2010